U heeft geen artikelen in uw winkelwagen
Data Science Data Science Essentials E-learning
Data Science Essentials E-learning

Goedkoper ergens anders?

Laat het ons weten!

+31367601019 [email protected]

Data Science Essentials E-learning

Merk: Data Science
€159,00 Excl. btw
€192,39 Incl. btw
  • Bestel 2 voor €155,82 per stuk en bespaar 2%
  • Bestel 3 voor €154,23 per stuk en bespaar 3%
  • Bestel 4 voor €152,64 per stuk en bespaar 4%
  • Bestel 5 voor €151,05 per stuk en bespaar 5%
  • Bestel 10 voor €143,10 per stuk en bespaar 10%
  • Bestel 25 voor €135,15 per stuk en bespaar 15%
  • Bestel 50 voor €127,20 per stuk en bespaar 20%
Op voorraad
Bestel voor 16:00 uur en start vandaag.
Je hebt nog counting... uur
  • Bestellen op Factuur
  • Beste opleider 2019
  • Na Betaling Direct Starten

Data Science Essentials E-learning

Bestel deze unieke E-learning cursus Data Science Essentials online, 1 jaar 24/ 7 toegang tot rijke interactieve video’s, spraak, voortgangsbewaking door rapportages en testen per hoofdstuk om de kennis direct te toetsen.


Data Science Overview

Defining Data Science

  • start the course
  • define data science and what it is to be a data scientist
  • describe the data wrangling aspect of data science
  • describe the big data aspect of data science
  • describe the machine learning aspect of data science

Implementing Data Science

  • use common data science terminology
  • recognize ways to communicate results of your data science
  • recall the steps in data science analysis
  • compare various tools and software libraries used for data science

Practice: Exploring Data Science

  • Exercise: Explore Your Data Science Needs

Data Gathering

Data Extraction

  • start the course
  • describe problems and software tools associated with data gathering
  • use curl to gather data from the Web
  • use in2csv to convert spreadsheet data to CSV format
  • use agate to extract data from spreadsheets
  • use agate to extract tabular data from dbf files
  • extract data from particular tags in an HTML document


  • distinguish between metadata and data
  • work with metadata in HTTP Headers
  • work with Linux log files
  • work with metadata in email headers

Remote Data

  • perform a secure shell connection to a remote server
  • copy remote data using a secure copy
  • synchronize data from a remote server

Practice: Curl and HTML

  • download an HTML file and explore table data

Data Filtering

Introduction to Data Filtering

  • start the course
  • identify common filtering techniques and tools
  • extract date elements from common date formats
  • parse content types in HTTP headers
  • use csvcut to filter CSV data
  • use sed to replace values in a text data stream
  • drop duplicate records from data
  • extract headers from a jpeg image
  • use pdfgrep to extract data from searchable pdf files
  • detect invalid or impossible data combinations
  • parse robots.txt from a web site to decide what should and shouldn't be crawled nor indexed

Practice: Filtering Dates

  • drop records from a CSV file based on date range

Data Transformation

File Format Conversions

  • start the course
  • convert CSV data to JSON format
  • convert XML data to JSON format
  • create SQL inserts from CSV data
  • extract CSV data from SQL
  • change delimiters in a csv file from commas to tabs

Data Conversions

  • convert basic date formats to standard ISO 8601 format
  • convert numeric formats within a CSV document
  • round floating point decimals to two places within a CSV document

Optical Character Recognition

  • use optical character recognition (OCR) to extract text from a jpeg image
  • use optical character recognition (OCR) to extract text from a pdf document

Practice: Converting Dates

  • read various date formats and convert to standard compliant ISO 8601 format

Data Exploration

Introduction to Data Exploration

  • start the course
  • use csvgrep to explore data in CSV data
  • use csvstat to explore values in CSV data
  • use csvsql to query CSV data like a SQL database
  • use gnuplot to quickly plot data on the command line
  • use wc to count words, characters, and lines within a text file
  • explore a subdirectory tree from the command line
  • use natural language processing to count word frequencies in a text document
  • take random samples from a list of records
  • find the top rows by value and percent in a data set
  • find repeated records in a data set
  • identify outliers using standard deviation

Practice: Exploring Word Frequencies

  • perform a word frequency count on a classic book from Project Gutenberg

Data Integration

Introduction to Data Integration

  • start the course
  • use csvjoin to concatenate CSV data
  • use the cat function to concatenate separate logs into a single file
  • sort lines in a text file
  • merge separate xml files into a single schema
  • aggregate data from a CSV file into a table of summarized values
  • normalize data from unstructured sources
  • denormalize data from a structured source
  • use pivot tables to cross tabulate data
  • insert missing values in a data set

Practice: Joining CSV Data

  • use csvjoin to merge two compatible CSV documents into one

Data Analysis Concepts

Data Science Math

  • start the course
  • perform basic math operations required by data scientists
  • perform basic vector math operations required by data scientists
  • perform basic matrix math operations required by data scientists
  • perform a matrix decomposition

Data Analysis Concepts

  • identify different forms of data
  • describe probability in terms of events and sample space size
  • describe basic properties of outcomes
  • apply probability rules in calculation
  • identify common continuous probability distributions
  • identify common discrete probability distributions
  • apply bayes theorem and describe how it is used in email spam algorithms

Estimates and Measures

  • apply random sampling to A/B tests
  • identify and describe various statistical measures
  • describe the difference between an unbiased and biased estimator
  • describe sampling distributions and recognize the central limit theorem
  • define confidence intervals and work with margins of error
  • carrying out hypothesis tests and working with p-values
  • apply the chi-square test for categorical values

Practice: Identifying Data

  • identify the given data set descriptions by their types

Data Classification and Machine Learning

Machine Learning Introduction

  • start the course
  • identify problems in which supervised learning techniques apply
  • identify problems in which unsupervised learning techniques apply
  • apply linear regression to machine learning problems
  • identify predictors in machine learning

Regression and Classification

  • apply logistic regression to machine learning problems
  • describe the use of dummy variables
  • use naive bayes classification techniques
  • work with decision trees


  • describe K-means clustering
  • define cluster validation
  • define principal component analysis

Errors and Validation

  • describe machine learning errors
  • describe underfitting
  • describe overfitting
  • apply k-folds cross validation
  • describe fall-forward and back-propagation in neural networks
  • describe SVMs and their use

Practice: Choosing a Method

  • choose the appropriate machine learning method for the given example problems

Data Communication and Visualization

Introduction to Data Communication

  • start the course
  • choose appropriate visualization techniques
  • describe the difference between correlation and causation
  • define Simpson's paradox
  • communicate data science results informally
  • communicate data science results formally
  • implement strategies for effective data communication


  • use scatter plots
  • use line graphs
  • use bar charts
  • use histograms
  • use box plots
  • create a network visualization
  • create a bubble plot
  • create an interactive plot

Practice: Creating a Scatter Plot

  • find an appropriate data set in which a scatter plot represents it visually and plot it
Heeft u niet gevonden wat u zocht?
Laat ons helpen!
Algemene eigenschappen
Duur: 15 uur
Taal: Engels
Certificaat van deelname: Ja
Online toegang: 365 dagen
Voortgangsbewaking: Ja
Award Winning E-learning: Ja
Geschikt voor mobiel: Ja
average of 0 review(s)
Geen reviews gevonden
Help ons en andere klanten door het schrijven van een review
Schrijf uw beoordeling!

Wij slaan cookies op om onze website te verbeteren. Is dat akkoord? Ja Nee Meer over cookies »