Natural Language Processing (NLP) E-Learning Training Gecertificeerde docenten Quizzen Assessments Tips trucs en Certificaat.
Lees meer.
Volume voordeel
No discount
1 Piece
€239,58€198,00
2% Korting
2 Pieces
€234,79€194,04/ Stuk
3% Korting
3 Pieces
€232,39€192,06/ Stuk
4% Korting
4 Pieces
€230,00€190,08/ Stuk
5% Korting
5 Pieces
€227,60€188,10/ Stuk
10% Korting
10 Pieces
€215,62€178,20/ Stuk
15% Korting
25 Pieces
€203,64€168,30/ Stuk
20% Korting
50 Pieces
€191,66€158,40/ Stuk
Maak een keuze
Officieel Certiport Examencentrum Online of fysiek in Almere
Direct starten met bekroonde e-learning Inclusief proefexamens & 24/7 toegang
ISO 9001 & 27001 gecertificeerd 1000+ bedrijven gingen u voor
Persoonlijk advies & maatwerk Gratis intake & nulmeting bij training
Productomschrijving
Natural Language Processing (NLP) E-Learning Training
Begrijp en beheers de kracht van taal met deep learning en neurale netwerken. De Natural Language Processing (NLP) Proficiency-reis onthult de fundamenten, concepten en de nieuwste ontwikkelingen in Deep Learning en neurale netwerken, specifiek toegepast op het gebied van natuurlijke taalverwerking.
Deze training biedt cursisten een uitgebreid inzicht in verschillende neurale netwerkarchitecturen die gebruikt worden voor NLP-taken. Je leert hun onderlinge verschillen en uitdagingen kennen én hoe je deze kennis effectief kunt inzetten in je eigen ontwikkelwerk of onderzoek.
Tijdens deze leerreis ontwikkel je vaardigheden in het bouwen en trainen van neurale netwerken voor onder andere:
Tekstanalyse en tekstverwerking
Sentimentanalyse
Taalvertalingen
Samenvatten van teksten
En andere geavanceerde NLP-toepassingen
Je werkt met populaire deep learning-frameworks en leert hoe je modellen in de cloud kunt implementeren en optimaliseren voor maximale prestaties.
Deze training is perfect voor wie zich wil specialiseren in het bouwen van slimme, taalgestuurde oplossingen.
Deze LearningKit met meer dan 22 leeruren is verdeeld in drie sporen:
Demo Natural Language Processing NLP Training
Cursusinhoud
Track 1: Getting Started with Natural Language Processing
In this track, the focus will be on fundamentals of NLP, and text mining and analytics. Courses (8 hours +):
Natural Language Processing: Getting Started with NLP
Course: 40 Minutes
Course Overview
What is Natural Language Processing (NLP)
Building Blocks of Language
Syntactic and Semantic Analysis
Various Tasks of NLP
Heuristics-based NLP
Machine Learning-based NLP
Deep Learning-based NLP
Challenges with NLP
Tool Ecosystem of NLP
NLP Use Cases in Industry
Course Summary
Natural Language Processing: Linguistic Features Using NLTK & spaCy
Course: 1 Hour, 11 Minutes
Course Overview
Linguistic Features in Language Processing
Introduction to Natural Language Toolkit (NLTK)
Introduction to spaCy
spaCy verses NLTK
Using Linguistic Features in NLTK - Part 1
Using Linguistic Features in NLTK - Part 2
Types of spaCy Models3
Using Linguistic Features in spaCy - Part 1
Using Linguistic Features in spaCy - Part 2
Using Linguistic Features in spaCy - Part 3
Using Linguistic Features in spaCy - Part 4
Course Summary
Text Mining and Analytics: Pattern Matching & Information Extraction
Course: 1 Hour, 52 Minutes
Course Overview
A Heuristic Approach to NLP
WordNet Fundamentals
Performing Synonyms, Synset, and WordNet Hierarchy
Performing WordNet Relations and Semantic Similarity
Working with SentiWordNet and Sentiment Analysis
Working with Regex for Pattern Matching
Investigating Python Regex Language
Performing Basic NLTK Chunking and Regex
Performing Advanced NLTK Chunking and Regex
Modeling Movie Plot Sentiment Analysis with WordNet
Course Summary
Text Mining and Analytics: Machine Learning for Natural Language Processing
Course: 2 Hours, 3 Minutes
Course Overview
NLP with Machine Learning (ML)
Machine Learning Pipeline for NLP
Feature Engineering for NLP
Common ML Models Used in NLP
Predicting Sarcasm in Text: Data Loading
Predicting Sarcasm in Text: Data Analysis
Predicting Sarcasm in Text: Linguistic Features
Predicting Sarcasm in Text: Feature Engineering
Predicting Sarcasm in Text: Model Building Part 1
Predicting Sarcasm in Text: Model Building Part 2
Predicting Sarcasm in Text: Model Tuning
Course Summary
Text Mining and Analytics: Natural Language Processing Libraries
Course: 1 Hour, 59 Minutes
Course Overview
Introduction to Polyglot and TextBlob
Introduction to Gensim and CoreNLP
Using Basic Polyglot Features
Using Multi-language Part of Speech Tagging
Exploring Advanced PolyGlot Features
Implementing Basic TextBlob Features
Implementing Advanced TextBlob Features
Exploring Basic Gensim Features
Building bigram and trigram Using Gensim
Building an LDA Model for Topic Modeling
Exploring Advanced Gensim Features
Course Summary
Text Mining and Analytics: Hotel Reviews Sentiment Analysis
Course: 1 Hour, 8 Minutes
Course Overview
Loading Hotel Reviews Data
Installing Libraries and Data Loading
Utilizing Exploratory Data Analysis (EDA)
Exploring Linguistic Features of Data
Building NLP Models
Interpreting Model Tuning
Deploying AutoML, PyCaret, and Streamlit Models
NLP Project Best Practices
NLP Project Challenges and Deployment Strategies
Course Summary
Track 2: Natural Language Processing with Deep Learning
In this track, the focus will be on deep learning for NLP. Courses (9 hours +)
Deep Learning for NLP: Introduction
Course: 1 Hour, 18 Minutes
Course Overview
NLP with Deep Learning
NLP Use Cases in Deep Learning
Basic Deep Learning Frameworks
Intermediate Deep Learning Frameworks
Advanced Deep Learning Frameworks
Introduction to Sentiment Data
Using Deep Learning Pipelines for Sentiment Data
Sentiment Analysis - Overview & Data
Sentiment Analysis - EDA
Sentiment Analysis - Pre-processing
Sentiment Analysis - Modeling & Evaluation
Sentiment Analysis - Creating Accuracy & Loss Graphs
Course Summary
Deep Learning for NLP: Neural Network Architectures
Course: 2 Hours, 30 Minutes
Course Overview
Basic Architecture of a Neural Network
Multilayer Perceptron (MLP)
Recurrent Neural Network (RNN) Architecture
Challenges in RNN
Applications of Neural Network-based Architecture
Introducing the Product Reviews Data
Loading Product Reviews Data into Google Colaboratory
Understanding Product Reviews Data
Exploring Product Reviews Data
Pre-processing Product Reviews Data
Applying Feature Engineering - Word Representation
Creating Vector Representations Using Word2vec
Averaging Feature Vectors
Creating Word Embeddings with Word2Vec
Constructing a RNN Model with Word2vec Embeddings
Using GloVe Vectors
Product Reviews Classification Using RNN
Course Summary
Deep Learning for NLP: Memory-based Networks
Course: 1 Hour, 27 Minutes
Course Overview
Introduction to Memory-based Networks
Gated Recurrent Unit (GRU) Architecture
Long Short-term Memory (LSTM) Architecture
Fall of RNN versus Rise of LSTM
Variants of LSTM networks
Product Review Data Preparation for Modeling
Product Review Data Classification Using GRU
Product Review Data Classification Using LSTM
Product Review Data Classification Using Bi-LSTM
Result Comparison between RNN, GRU, and LSTM
Course Summary
Deep Learning for NLP: Transfer Learning
Course: 2 Hours, 10 Minutes
Course Overview
Introduction to Transfer Learning
Advantages and Challenges of Transfer Learning
Role of Language Modeling in Transfer Learning
Introduction to Basic Transfer Learning Models
Intermediate Transfer Learning Models
Advance Transfer Learning Models
Building ELMo Embedding Layer for Reviews
Creating ELMo an Model for Product Reviews
Classifying Product Reviews Using ELMo
Reshaping Data for the ELMo Embedding Layer
Building a Language Model Using ULMFiT
Implementing the Language Model Using ULMFiT
Classifying Product Reviews Using ULMFIT & FastText
Performing Result Comparison
Course Summary
Deep Learning for NLP: GitHub Bug Prediction Analysis
Course: 1 Hour, 56 Minutes
Course Overview
Case Study: Introduction to GitHub Bug Prediction
Case Study: Loading Data & Libraries
Case Study: Understanding the Data
Case Study: Basic Exploratory Data Analysis
Case Study: Punctuation & Stop Word Analysis
Case study: Advanced Data Preprocessing
Case Study: Data Cleaning
Case Study: Exploring Vectorization
Case Study: Exploring Embeddings
Case Study: Applying Deep Learning Modeling
Case Study: Performing Model Comparison
Course Summary
Track 3: Advanced NLP
In this track, the focus will be on transformer models, BERT, and GPT. Courses (4 hours +)
Advanced NLP: Introduction to Transformer Models
Course: 41 Minutes
Course Overview
Sequence-to-Sequence (Seq2Seq) Models
Attention in Seq2Seq Models
Transformer Architecture
Self-Attention Layer in Transformer Architecture
Multi-head Attention in Transformer Architecture
Transformer Encoder Block
Transformer Decoder Block
Transformer Model Architecture
Industry Use Cases for Transformer Models
Transformer Model Challenges
Course Summary
Advanced NLP: Introduction to BERT
Course: 1 Hour, 14 Minutes
Course Overview
BERT Architecture
Types of BERT Models
Transfer Learning with BERT
The Hugging Face Ecosystem
Practicing Model Setup & Data Exploration with BERT
Pre-processing Data with BERT
Using BERT for Sentiment Classification Training
Evaluating Models with BERT
Best Practices for BERT
BERT Challenges and Deployment Strategy
Course Summary
Advanced NLP: Introduction to GPT
Course: 1 Hour, 10 Minutes
Course Overview
Language Models
Generative Pre-trained Transformer (GPT)
GPT Versions
GPT-3 Model Architecture
GPT-3 Few-Shot Learning
GPT-3 Use Cases and Challenges
Downloading the GPT Model
Performing Greedy and Beam Searches in GPT
Performing Top K and Top P Sampling in GPT
Using Benchmark Prompts in GPT
Course Summary
Advanced NLP: Language Translation Using Transformer Model
Course: 1 Hour, 29 Minutes
Course Overview
Machine Translation
Using Single Sentence English to French Translation
Setting up the Environment for Translation
Performing EDA for Translation
Using Tokens and Vectors for Translation
Using Training and Validation Data for Translation
Using Transformer Encoder for Translation
Using Transformer Decoder for Translation
Defining Attention and Embedding for Translation
Assembling and Training the Model for Translation
Using a Trained Model for Translation
Course Summary
Track 4: NLP Case Studies
In this track, the focus will be on NLP case studies. Courses (1 hours +)
NLP Case Studies: News Scraping Translation & Summarization
Course: 43 Minutes
Course Overview
Text Summarization Application
Using Data Scraping
Performing Translation into English
Performing Text Summarization
Creating a User Interface (UI) with Gradio
Course Summary
NLP Case Studies: Article Text Comprehension & Question Answering
Course: 29 Minutes
Course Overview
The Q&A Pipeline and Text Comprehension
Installing PyTorch and Transformers Libraries
Importing a Text Comprehension Model
Using a Text Comprehension Model
Developing a Text Comprehension App Using Gradio
Course Summary
Assessment:
Final Exam: Natural Language Processing will test your knowledge and application of the topics presented throughout the Skillsoft Aspire Natural Language Processing Journey.
Specificaties
Artikelnummer
137313022
SKU
137313022
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
22 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Beheerst u Microsoft 365 Fundamentals ? Bestel online en maak een afspraak voor ...
€169,40€140,00€152,46€126,00
Specificaties
Artikelnummer
137313022
SKU
137313022
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
22 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Wij gebruiken functionele en analytische cookies om onze website goed te laten werken en het gebruik ervan te meten met Google Analytics. Er worden geen persoonsgegevens gedeeld voor advertentiedoeleinden. Door op "Accepteren" te klikken, geeft u toestemming voor het plaatsen van deze cookies.
Cookies beheren