Data Analysis with R E-Learning Training Gecertificeerde docenten Quizzen Assessments test examen Live Labs Tips trucs Certificaat.
Lees meer.
Volume voordeel
No discount
1 Piece
€360,58€298,00
2% Korting
2 Pieces
€353,37€292,04/ Stuk
3% Korting
3 Pieces
€349,76€289,06/ Stuk
4% Korting
4 Pieces
€346,16€286,08/ Stuk
5% Korting
5 Pieces
€342,55€283,10/ Stuk
10% Korting
10 Pieces
€324,52€268,20/ Stuk
15% Korting
25 Pieces
€306,49€253,30/ Stuk
20% Korting
50 Pieces
€288,46€238,40/ Stuk
Maak een keuze
Officieel Certiport Examencentrum Online of fysiek in Almere
Direct starten met bekroonde e-learning Inclusief proefexamens & 24/7 toegang
ISO 9001 & 27001 gecertificeerd 1000+ bedrijven gingen u voor
Persoonlijk advies & maatwerk Gratis intake & nulmeting bij training
Productomschrijving
Data Analysis with R E-Learning Training
Ontdek de kracht van R voor statistiek, data-analyse en modellering.
R is wereldwijd een van de meest gebruikte programmeertalen voor statistische analyse, datamining en modellering. In deze praktijkgerichte training maak je stap voor stap kennis met de taal R en leer je hoe je datasets analyseert, visualiseert en modelleert – inclusief het toepassen van statistische concepten in de praktijk.
Wat je leert:
De basis van R: syntax, variabelen, functies en programmeerstructuren
Werken met datasets in R en het uitvoeren van data cleaning & verkenning
Toepassen van statistische concepten zoals gemiddelden, spreiding, correlatie
Analyseren en modelleren van gegevens met regressie en clustering
Gebruik van R voor rapportage en datavisualisatie
Deze cursus maakt deel uit van een Agile Learning Kit, met stapsgewijze modules, labs, mentoring en 365 dagen toegang.
Waarom kiezen voor deze opleiding?
Leer statistische analyse en modellering met een krachtige open-source tool
Agile leermethode: leer in overzichtelijke stappen op je eigen tempo
Toegang tot alle middelen voor een heel jaar (365 dagen)
Wie zou moeten deelnemen?
Deze training is ideaal voor:
Data-analisten en onderzoekers die met R willen starten
Studenten in statistiek, economie of data science
Professionals die data willen analyseren zonder complexe tools
Academici en wetenschappers die hun data-analyses willen structureren
Deze Learning Kit met meer dan 26 leeruren is verdeeld in drie sporen:
Demo Data Analysis with R Training
Cursusinhoud
Module 1: Getting Started with R Programming
In this module, the focus will be on R programming for beginners. Explore the basics of R. Courses (6 hours +):
R Programming for Beginners: Getting Started
Course: 1 Hour, 31 Minutes
Course Overview
Installing R on macOS
Installing R on Windows
Using the ? Operator in R
Using help() and Creating Variables in R
Using Reserved Words and Assignment Operators in R
Using Vectors in R
Performing Arithmetic Operations in R
Creating Variables in R
Using the Built-in Functions of R
Using the Numeric Built-in Functions of R
Recognizing the Basic Data Types in R
Course Summary
R Programming for Beginners: Exploring R Vectors
Course: 1 Hour, 28 Minutes
Course Overview
Creating Basic R Vectors
Understanding the Finer Points of R Vectors
Indexing into R Vectors
Performing Vectorized Operations in R
Implementing Relational Operations on R Vectors
Creating R Vectors with Key-Value Pairs
Recycling R Vectors in Vectorized Operations
Filtering Data in R Vectors
Using any(), all(), & which() Functions on R Vectors
Course Summary
R Programming for Beginners: Leveraging R with Matrices, Arrays, & Lists
Course: 1 Hour, 36 Minutes
Course Overview
Creating Matrices in R
Naming Dimensions in R Matrices
Performing Math Operations on R Matrices
Implementing Matrix Multiplication in R
Combining Matrices in R
Performing Indexing Operations on R Matrices
Creating Arrays in R
Indexing into R Arrays
Using Lists in R
Specifying Key-Value Pairs in R Lists
Editing Keys and Values in R Lists
Exploring R Lists with Different Data Types
Course Summary
R Programming for Beginners: Understanding Data Frames, Factors, & Strings
Course: 1 Hour, 53 Minutes
Course Overview
Creating R Data Frames
Naming R Data Frame Dimensions & Viewing Statistics
Indexing into R Data Frames
Filtering Data in R Data Frames
Combining R Data Frames
Joining R Data Frames
Using Factors in R to Limit Variable Values
Creating R Data Frames with Factors
Using Factors with tapply() and split() in R
Viewing Counts Using Tables in R
Working with Strings in R
Using formatC() & sprintf() in R
Course Summary
Assessment:
Getting Started with R Programming
Module 2: Applying and Using R Programming Structures
In this module, the focus will be on R programming structures. Explore control flow, functions, and object systems. Courses (4 hours +)
Using R Programming Structures: Leveraging R with Control Flow & Looping
Course: 1 Hour, 13 Minutes
Course Overview
Conditional Branching with If Statements in R
Using ifelse() and the Switch Statement in R
Iterating over Data with For Loops in R
Iterating over R Lists and Matrices with For Loops
Using Nested For Loops in R
Using While Loops in R
Using Repeat Loops in R
Performing Advanced Looping in R
Course Summary
Using R Programming Structures: Functions & Environments
Course: 1 Hour, 41 Minutes
Course Overview
Creating Custom Functions in R
Returning Data from Functions in R
Using Named Arguments in R
Using Default Arguments in R
Working with First-class Functions in R
Storing Functions & Using Them in Switch Statements
Working with R Environments
Creating Inner Functions in R
Recognizing R Functions and Environments
Working with Closures in R
Working with Replacement Functions in R
Course Summary
Using R Programming Structures: Object Systems
Course: 59 Minutes
Course Overview
Recognizing the print() Function & S3 Object System
Identifying R Function Invocations in S
Creating Custom Classes Using R Functions
Extending the print() Function for R Custom Classes
Using Reference Classes in R
Using Member Variables and Functions in R
Using Inheritance in Reference Classes in R
Course Summary
Assessment:
Applying and Using R Programming Structures
Module 3: Working with Datasets In R
In this module, the focus will be on R datasets. Explore how to load, save, and transform data as well as select, filter, join, and visualize data. Courses (6 hours +)
Datasets in R: Loading & Saving Data
Course: 1 Hour, 44 Minutes
Course Overview
Installing R on macOS
Installing RStudio on macOS
Installing R on Windows
Installing RStudio on Windows
Running Commands Using the RStudio Console
Working with Panes in RStudio
Creating a New Project and Examining Datasets
Demonstrating and Visualizing Built-in Datasets
Browsing Package Vignettes
Reading from CSV Files
Reading from Text, XML, Excel, and JSON Files
Writing Data Out to Different File Formats
Course Summary
Datasets in R: Transforming Data
Course: 1 Hour, 59 Minutes
Course Overview
Working with an In-memory SQLite Table
Connecting to and Retrieving Results from SQLite
Updating Results with a Persistent Database
Dropping and Renaming Columns
Changing Column Data Types
Transforming Data Using the Transform Function
Transforming Data Using the Apply Function Family
Transforming Data Using if_else() and mutate()
Wide Form and Long Form: Using stack() and unstack()
Wide Form and Long Form: Using melt() and dcast()
melt() and dcast() on a Real Dataset
Wide Form and Long Form: Using gather() and spread()
Course Summary
Datasets in R: Selecting, Filtering, Ordering, & Grouping Data
Course: 1 Hour, 35 Minutes
Course Overview
Formatting Columns to Have the Right Data Type
Selecting Specific Rows and Columns
Filtering Operations on Data Frame Rows
Selecting and Filtering Using Packages in tidyverse
Using the dplyr filter() Function
Retrieving Samples and Top N Results
Specifying the Correct Data Types for Columns
Sorting Using Order and Arrange
Grouping and Aggregations on Data Frames
Grouping and Aggregation Using dplyr
Course Summary
Datasets in R: Joining & Visualizing Data
Course: 47 Minutes
Course Overview
Joining Data Frames Using merge()
Joining Tibbles Using Joins and Filtering Joins
Creating Histograms and Density Curves
Using Plots and Charts to Visualize Data
Course Summary
Assessment:
Working with Datasets in R
Module 4: Statistical Analysis and Modeling In R
In this module, the focus will be on statistical analysis and modeling in R. Explore probability distributions, statistical tests, regression analysis, clustering, and regularized models. Courses (9 hours +)
Statistical Analysis and Modeling in R: Working with Probability Distributions
Course: 1 Hour, 38 Minutes
Course Overview
Statistical Tools for Understanding Data
Population and Sample Metric Comparisons
Characteristics of Probability Distribution Types
Sampling and Analyzing Uniform Distribution Data
Sampling and Analyzing Binomial Distribution Data
Computing Probabilities in Binomial Distributions
Sampling and Analyzing Poisson Distribution Data
Examining Normal and Exponential Distributions
Interpreting QQ Plots Using R
Using QQ Plots in R to Compare Datasets
Course Summary
Statistical Analysis and Modeling in R: Understanding & Interpreting Statistical Tests
Course: 1 Hour, 4 Minutes
Course Overview
Statistical Tools for Understanding Data
Population and Sample Metric Comparisons
Characteristics of Probability Distribution Types
Sampling and Analyzing Uniform Distribution Data
Sampling and Analyzing Binomial Distribution Data
Computing Probabilities in Binomial Distributions
Sampling and Analyzing Poisson Distribution Data
Examining Normal and Exponential Distributions
Interpreting QQ Plots Using R
Using QQ Plots in R to Compare Datasets
Course Summary
Statistical Analysis and Modeling in R: Statistical Analysis on Your Data
Course: 2 Hours, 7 Minutes
Course Overview
Identifying One-sample T-test Assumptions
Performing the One-sample T-test in R
Performing Variations of the One-sample T-test in R
Performing the One-sample Z-test in R
Identifying Assumptions of the Two-sample T-test
Running Two-sample T-tests for Equal Variances in R
Using Welch's two-sample T-test for Unequal Variance
Using R to Perform the Paired Samples T-test
Checking Paired Samples T-test Assumptions Using R
Performing the Wilcoxon Signed-rank Test Using R
Identifying Assumptions of the ANOVA Test Using R
Running the One-way ANOVA and Tukey HSD Tests in R
Running the Two-way ANOVA Test for Different Models
Parametric vs. Non-parametric Tests
Course Summary
Statistical Analysis and Modeling in R: Performing Regression Analysis
Course: 1 Hour
Course Overview
The Basic Characteristics of Machine Learning Models
Building and Evaluating Regression Models Using R
Visualizing Data Relationships Using R
Performing Simple Linear Regression in R
Performing Multiple Regression in R
Deriving Predictions Using Regression Models in R
Building Regression Models Using Cross-validation
Course Summary
Statistical Analysis and Modeling in R: Performing Classification
Course: 1 Hour, 37 Minutes
Course Overview
Recognizing and Evaluating Classification Models
Interpreting Logistic Regression Using R
Training and Evaluating a Logistic Regression Model
Building a Logistic Model in R Using all Predictors
Using R to Train a Model with Imbalanced Data
Building and Evaluating Models with R
Using R to Evaluate Imbalanced Data Model Types
Using Resampling Techniques on Imbalanced Data in R
Recognizing Decision Tree Models
Using R to Explore and Process Data
Visualizing Decision Trees and Performing Prediction
Course Summary
Statistical Analysis and Modeling in R: Performing Clustering
Course: 50 Minutes
Course Overview
Recognizing and Evaluating Clustering Models
Investigating and Visualizing Clustering Data in R
Statistical Analysis and Modeling in R: Building Regularized Models & Ensemble Models
Course: 1 Hour, 32 Minutes
Course Overview
Overfitting and Underfitting Machine Learning Models
The Bias-Variance Trade-off
Exploring and Understanding Data for Regression
Performing Ordinary Least Squares (OLS) Regression
Preparing Data for Regularized Regression Models
Performing Ridge Regression in R
Performing Lasso Regression in R
Performing ElasticNet Regression in R
Recognizing Ensemble Learning
Using R to Explore and Visualize Data
Performing Regression Using Decision Trees in R
Performing Regression Using Random Forest in R
Course Summary
Assessment:
Statistical Analysis and Modeling in R
Practice Lab: Data Science Using R
The Data Science Using R Lab will provide you with the necessary platform to gain hands on skills where you can practice different tasks related to MongoDB. You will cover areas like manipulating a data set using multiple dplyr verbs, adding the browser function to some R code to debug it, using xtable to output a table in LaTeX format, and creating an R Markdown file (.rmd) and rendering the output as html.
Specificaties
Artikelnummer
128303322
SKU
128303322
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
26 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Bestel deze unieke E-Learning Training ITIL 4 Foundation online, 1 jaar 24/ 7 to...
€361,79€299,00
Specificaties
Artikelnummer
128303322
SKU
128303322
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
26 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Wij gebruiken functionele en analytische cookies om onze website goed te laten werken en het gebruik ervan te meten met Google Analytics. Er worden geen persoonsgegevens gedeeld voor advertentiedoeleinden. Door op "Accepteren" te klikken, geeft u toestemming voor het plaatsen van deze cookies.
Cookies beheren