Essential Math for Data Science E-Learning Training Gecertificeerde docenten Quizzen Tips trucs Certificaat.
Lees meer.
Volume voordeel
No discount
1 Piece
€239,58€198,00
2% Korting
2 Pieces
€234,79€194,04/ Stuk
3% Korting
3 Pieces
€232,39€192,06/ Stuk
4% Korting
4 Pieces
€230,00€190,08/ Stuk
5% Korting
5 Pieces
€227,60€188,10/ Stuk
10% Korting
10 Pieces
€215,62€178,20/ Stuk
15% Korting
25 Pieces
€203,64€168,30/ Stuk
20% Korting
50 Pieces
€191,66€158,40/ Stuk
Maak een keuze
Officieel Certiport Examencentrum Online of fysiek in Almere
Direct starten met bekroonde e-learning Inclusief proefexamens & 24/7 toegang
ISO 9001 & 27001 gecertificeerd 1000+ bedrijven gingen u voor
Persoonlijk advies & maatwerk Gratis intake & nulmeting bij training
Productomschrijving
Essential Math for Data Science E-Learning Training
Begrijp de wiskunde achter Machine Learning en AI – en versterk je datavaardigheden.
Wiskunde is het fundament van Data Science, Machine Learning en Artificial Intelligence. Concepten zoals kansrekening, statistiek, lineaire algebra en calculus zijn essentieel om algoritmes te begrijpen, te bouwen en te optimaliseren. Deze training helpt je stap voor stap om de noodzakelijke wiskundige inzichten op te doen die je nodig hebt voor data-analyse en modellering.
In deze Learning Kit ontdek je:
De basisprincipes van statistiek en kansrekening
Lineaire algebra voor vectoren, matrices en transformaties
Calculus voor het optimaliseren van machine learning-algoritmen
De impact van wiskunde op modelprestaties en dagelijkse datataken
Hoe deze concepten samenwerken binnen AI, ML en data science
Deze cursus is onderdeel van een Agile Learning Kit met duidelijke leersporen, hands-on opdrachten en 365 dagen toegang.
Waarom kiezen voor deze opleiding?
Versterk je kennis van de wiskundige fundamenten achter data science
Leer op een toegankelijke manier over statistiek, algebra en calculus
Combineer theorie met praktische labs, mentorhulp en assessments
Volledig online met 365 dagen toegang tot alle bronnen
Ideaal als basis of opfrissing voor AI/ML-trajecten
Wie zou moeten deelnemen?
Deze training is ideaal voor:
Beginnende data scientists zonder wiskundige achtergrond
ML/AI-engineers die algoritmes beter willen begrijpen
Studenten of docenten in data-gerelateerde opleidingen
IT- en analyticsprofessionals die wiskundige onderbouwing missen
Deze Learning Kit met meer dan 45 leeruren is verdeeld in drie sporen:
Demo Essential Math for Data Science Training
Cursusinhoud
Track 1: Introduction to Math
In this track, you will focus on the fundamentals of linear algebra and calculus. This includes discrete math concepts and their implementations, theoretical and practical guide to calculus, exploring linear algebra, and matrix operations. Courses (12 hours +):
Math & Optimizations: Introducing Sets & Set Operations
Course: 1 Hour
Course Overview
Comparing Discrete Data and Discrete Mathematics
Sets and Set Operations
Creating and Working with Sets
Performing Union and Intersection
Computing Difference and Symmetric Difference
Understanding Subsets and Supersets
Course Summary
Math & Optimizations: Introducing Graphs & Graph Operations
Course: 1 Hour, 34 Minutes
Course Overview
Components of Graphs
Types of Graphs
Creating Undirected Graphs Using NetworkX
Adding Attributes to Graphs Nodes and Edges
Creating Directed Graphs Using NetworkX
Computing Degree of a Node
Understanding Predecessors and Successors
Computing Simple Cycles, Triangles, and Edge Covers
Performing Topological Sort
Computing Shortest Path and Minimum Spanning Tree
Course Summary
Math & Optimizations: Solving Optimization Problems Using Linear Programming
Course: 1 Hour, 32 Minutes
Course Overview
Understanding the Importance of Optimization
Objectives, Decision Variables, and Constraints
Optimal Solution and Feasible Solutions6
Linear Programming
Case Study: Happy Pet Food
Solving the Problem Formulation Graphically
An Overview of the Simplex Method
Using the SciPy Library to Minimize Cost
Using the SciPy Library to Maximize Profit
Solving Linear Programming Problems
Course Summary
Math & Optimizations: Solving Optimization Problems Using Integer Programming
Course: 57 Minutes
Course Overview
Understanding the Importance of Optimization
Objectives, Decision Variables, and Constraints
Optimal Solution and Feasible Solutions
Linear Programming
Case Study: Happy Pet Food
Solving the Problem Formulation Graphically
An Overview of the Simplex Method
Using the SciPy Library to Minimize Cost
Using the SciPy Library to Maximize Profit
Solving Linear Programming Problems
Course Summary
Calculus: Getting Started with Derivatives
Course: 1 Hour, 13 Minutes
Course Overview
Differentiation and Derivatives
Calculating the Slope between Two Points
Calculating the Slope at a Point
Applying Derivatives
Understanding Differential Equations and Differences
Computing Derivatives of Constant Functions
Computing Derivatives of Linear Functions
Calculating Derivatives with Built-in Functions
Course Summary
Calculus: Derivatives with Linear and Quadratic Functions & Partial Derivatives
Course: 1 Hour, 26 Minutes
Course Overview
Calculating Derivatives on Linear Functions with Built-in Functions
Interpreting the Derivative as the Slope of a Tangent Line
Interpreting the Velocity of an Accelerating Particle
Modeling Velocity and Trajectory
Partial Derivatives
Computing Partial Derivatives
Performing More Partial Derivative Computations
Training Neural Networks with Partial Derivatives
Course Summary
Calculus: Understanding Integration
Course: 1 Hour, 4 Minutes
Course Overview
Getting Familiar with Integration
Differentiating Between Definite and Indefinite Integrals
Comparing Derivatives and Integrals
Computing Integrals
Integrating Constant and Linear Functions
Integrating Sine and Cosine Functions
Integrating Quadratic and Polynomial Functions
Course Summary
Essential Maths: Exploring Linear Algebra
Course: 1 Hour, 51 Minutes
Course Overview
An Overview of Linear Algebra
Vectors with Different Notations
Vector Operations
Matrices and Matrix Operations
Adding Matrices Element-wise
Performing Matrix Multiplication
Computing Determinants and Transposing Matrices
Defining and Identifying Diagonal Matrices
Computing the Inverse of a Matrix
Using SciPy to Work with Matrices
Understanding Properties of Matrices
Course Summary
Matrix Decomposition: Getting Started with Matrix Decomposition
Course: 1 Hour, 20 Minutes
Course Overview
Vectors and Notation
Linear Transformations with Matrices
Matrix Types
Matrix Decomposition
QR and Cholesky Decomposition
Getting Set Up in Python
Performing LU Decomposition in Python
Performing QR Decomposition in Python
Performing Cholesky Decomposition in Python
Course Summary
Matrix Decomposition: Using Eigendecomposition & Singular Value Decomposition
Course: 1 Hour, 30 Minutes
Course Overview
The Purpose of Eigenvectors and Eigenvalues
Applying a Change of Basis Vectors
Visualizing Eigenvectors and Eigenvalues
Deriving the Characteristic Equation
Computing Eigenvectors and Eigenvalues
Exploring Properties of Eigenvalues and Eigenvectors
Diagonalizing Matrices
Eigendecomposition vs. Singular Value Decomposition
Using Singular Value Decomposition with a Matrix
Importing an Image for Singular Value Decomposition
Performing Singular Value Decomposition on an Image
Course Summary
Privacy and Cookie PolicyTerms of Use
Final Exam: Introduction to Math
This assessment will test your knowledge and application of the topics presented throughout the track.
Track 2: Statistics and Probability
In this track, you will acquire a deeper understanding of probability and statistical concepts including probability distributions, various types of statistical tests, and hypothesis testing. You will deep dive into understanding conditional probability concepts that forms the crux of naïve Bayes classification algorithms. Courses (17 hours +)
Core Statistical Concepts: An Overview of Statistics & Sampling
Course: 50 Minutes
Course Overview
Working with Statistical Data
Measures of Central Tendency
Measures of Dispersion
Sampling Techniques
Working with Imbalanced Data
Course Summary
Core Statistical Concepts: Statistics & Sampling with Python
Course: 1 Hour, 40 Minutes
Course Overview
Installing pandas and Data Visualization Modules
Loading and Analyzing Data Using pandas
Computing the Mean and Median of a Distribution
Visualizing Distributions with Seaborn & Matplotlib
Computing Variance and Standard Deviation
Generating Random and Stratified Samples
Implementing Cluster and Systematic Sampling
Implementing Undersampling and Oversampling
Oversampling with SMOTE
Course Summary
Probability Theory: Getting Started with Probability
Course: 58 Minutes
Course Overview
Probability and Random Variables
Events and Types of Events
Installing Modules
Simulating Trials to Flip a Coin
Simulating Trials to Roll a Die
Simulating Trials to Pick Marbles at Random
Course Summary
Probability Theory: Understanding Joint, Marginal, & Conditional Probability
Course: 1 Hour, 42 Minutes
Course Overview
Joint, Marginal, and Conditional Probability
Components of Marginal and Conditional Probability
Chained Rule and Joint Probability of Events
Calculating Marginal Probabilities
Applying the Chain Rule to Conditional Probabilities
Computing Joint Probabilities on Dice Rolls
Exploring Joint Probability with Dependent Variables
Computing Marginal and Conditional Probabilities with Dependent Variables
Defining the Expected Value of a Random Variable
Computing Expected Value of a Random Variable
Computing Expected Value of a Dice Roll
Course Summary
Probability Theory: Creating Bayesian Models
Course: 1 Hour, 50 Minutes
Course Overview
Bayes Theorem
Bayesian Networks
Using the Chain Rule with Bayesian Networks
Creating a Bayesian Network Model
Associating Probabilities with Bayesian Networks
Computing Probabilities from Bayesian Networks
Creating Bayesian Machine Learning Models
Predicting Values Using a Bayesian Model
Interpreting Probabilities Generated by Bayesian Models
Understanding and Creating Naive Bayes Models
Testing Naive Bayes Machine Learning Models
Course Summary
Probability Distributions: Getting Started with Probability Distributions
Course: 1 Hour, 31 Minutes
Course Overview
Getting Familiar with Statistics
Populations and Samples
Types of Probability Distributions
Statistical Terminology
Installing Python Libraries to Analyze Data
Visualizing Data with Box Plots
Exploring Distributions with Charts
Generating Confidence Intervals
Measuring Parameters with Confidence Intervals
Understanding Skewness and Kurtosis
Computing Skewness and Kurtosis
Course Summary
Probability Distributions: Uniform, Binomial, & Poisson Distributions
Course: 1 Hour, 33 Minutes
Course Overview
Generating Uniform Distributions
Exploring the CDF, PDF, and PPF Functions
Generating and Sampling Uniform Data
Generating Binomial Distributions
Using Binomial Distributions
Performing Computations on Binomial Distributions
Using Poisson Distribution
Exploring Functions for Poisson Distributions
Applying Poisson Distributions
Course Summary
Probability Distributions: Understanding Normal Distributions
Course: 1 Hour, 7 Minutes
Course Overview
Working with Normal Distributions
Exploring Mean and SD of Normal Distributions
Computing the CDF for Various Normal Distributions
Analyzing the Symmetry of Normal Distributions
Understanding the Law of Large Numbers
Exploring the Central Limit Theorem
Course Summary
Statistical & Hypothesis Tests: Getting Started with Hypothesis Testing
Course: 56 Minutes
Course Overview
Introducing Statistics
Introducing Hypothesis Testing
The Null Hypothesis and the Alternative Hypothesis
P-values and Alpha Levels
Introducing T-tests
Errors in Hypothesis Testing
Performing ANOVA Analysis
Course Summary
Statistical & Hypothesis Tests: Using the One-sample T-test
Course: 1 Hour, 42 Minutes
Course Overview
Installing Modules
Setting up a Manual One-sample T-test
Performing T-tests Using Different Libraries
Performing T-tests on Data with Different Distributions
Testing for Normal Distributions Using Statistical Tests
Exploring T-tests with Real-world Examples
Using Single-sided T-tests
Running the Wilcoxon Signed-rank Test
Comparing Medians Using the Wilcoxon Signed-rank Test
Comparing Before and After Data with Paired T-tests
Course Summary
Statistical & Hypothesis Tests: Using Non-parametric Tests & ANOVA Analysis
Course: 2 Hours, 18 Minutes
Course Overview
Understanding the Mann-Whitney U-test
Comparing Categories with the Mann-Whitney U-test
Using the Paired Wilcoxon Signed-rank Test
Comparing Paired T-test & Wilcoxon Signed-rank Test
Understanding Pairwise T-tests
Comparing Values across Groups with Pairwise T-tests
Understanding One-way ANOVA
Performing One-way ANOVA and Linear Regression
Performing the Post-hoc Tukey's HSD Test
Checking ANOVA Residuals' Assumptions
Using the Kruskal-Wallis Test
Understanding Two-way ANOVA
Performing Two-way ANOVA with Interaction
Course Summary
Final Exam: Statistics and Probability This assessment will test your knowledge and application of the topics presented throughout the track.
Track 3: Math Behind ML Algorithms
In this track, the focus will be on math applied in various machine learning algorithms. You will understand the intuition behind these algorithms along with math used in their optimization/loss/cost functions. You will understand the math behind regression algorithms, decision trees, distance-based models, kernel methods and SVM and neural networks. Courses (12 hours +)
Regression Math: Getting Started with Linear Regression
Course: 1 Hour, 42 Minutes
Course Overview
Regression and Prediction
Residuals in Regression
The Computation of "The Best Fit"
Partial Derivatives with Regression Models
Calculating R-squared
The Normal Equation
Setting up Data and Viewing Correlations
Splitting Data for Regression
Defining the Slope and Intercept for Regression
Creating a Regression Line and Predictions
Viewing the Performance of a Regression Model
Performing Regression with Built-in Modules
Course Summary
Regression Math: Using Gradient Descent & Logistic Regression
Course: 1 Hour, 43 Minutes
Course Overview
How Gradient Descent Works
What Gradients Are Used For
Computing Gradient Descent
Setting up Data for Gradient Descent
Defining an Epoch Manually
Performing Gradient Descent Manually
How Logistic Regression Works
Computing an S-curve
Viewing Correlations for Logistic Regression
Splitting and Shaping Data for Logistic Regression
Performing Logistic Regression with Gradient Descent
Course Summary
The Math Behind Decision Trees: An Exploration of Decision Trees
Course: 2 Hours, 8 Minutes
Course Overview
How Classification Is Used
Comparing Rule-based and ML-based Models
How Decision Trees Work
Building a Rule-based Decision Tree
How Entropy Works
How Entropy and Information Gain Work Together
How GINI Impurity Works
Deciding Splits Based on GINI Impurity
Setting up Datasets
Imagine a Rule-based Decision Tree
Creating a Basic Decision Tree
Working with Decision Trees and Continuous Data
Plotting a Decision Tree in a Tree Diagram
Defining the Rules for a Rule-based Decision Tree
Training an ML-based Decision Tree
Testing an ML-based Decision Tree9 MinutesCompletedActions
Course Summary
Distance-based Models: Overview of Distance-based Metrics & Algorithms
Support Vector Machine (SVM) Math: A Conceptual Look at Support Vector Machines
Course: 59 Minutes
Course Overview
Support Vector Machines (SVMs) in Machine Learning
SVMs, Data Classification, and Hyperplanes
SVMs, Scaling, and Soft and Hard Margins
Working with Non-linear Data
The Optimization Problem for SVMs
Optimizing a Soft-margin Classifier
Course Summary
Support Vector Machine (SVM) Math: Building & Applying SVM Models in Python
Course: 1 Hour, 34 Minutes
Course Overview
Generating Data for Binary Classification
Preparing Data for an SVM Classifier
Training and Evaluating an SVM Model
Analyzing a Dataset for a Binary Classifier
Visualizing the Relationships between Features
Training and Evaluating the LIBSVM Classifier
Analyzing the Data for Support Vector Regression
Building a Support Vector Regressor
Course Summary
Neural Network Mathematics: Understanding the Mathematics of a Neuron
Course: 53 Minutes
Course Overview
The Architecture and Components of Neural Networks
The Math behind Neurons
Installing Python Modules
Performing Linear Transformation
Processing Data in Batches
Course Summary
Neural Network Mathematics: Exploring the Math behind Gradient Descent
Course: 1 Hour, 54 Minutes
Course Overview
The Intuition behind Gradient Descent
Computing Gradients
Activation Functions
Visualizing Common Activation Functions
Visualizing the ReLU Function and Its Variants
Mitigating Issues in Neural Network Training
Simple Regression Using TensorFlow
Learning Rate and Number of Epochs
Exploring Datasets and Setting up Utilities
Training a Simple Neural Network from Scratch
Course Summary
Final Exam: Math Behind ML Algorithms
This assessment will test your knowledge and application of the topics presented throughout the track.
Track 4: Advanced Math
In this module, the focus will be on statistical analysis and modeling in R. Explore probability distributions, statistical tests, regression analysis, clustering, and regularized models. Courses (2 hours +)
ML & Dimensionality Reduction: Performing Principal Component Analysis
Course: 1 Hour, 16 Minutes
Course Overview
Linear Transformations of Vectors
Change of Basis, The Intuition behind PCA
An Explanation of Principal Components
A Quick Exploration of Eigenvectors and Eigenvalues
Computing Principal Components
Computing Eigenvectors and Eigenvalues
Calculating Principal Components
Building a Baseline Classification Model
Training a Model Using Principal Components
Course Summary
Recommender Systems: Under the Hood of Recommendation Systems
Course: 1 Hour, 23 Minutes
Course Overview
Uses and Categories of Recommendation Systems
The Collaborative Filtering Technique
How to Work with Matrix Factorization
Using Matrix Factorization with Gradient Descent
Introducing a Regularization Term to Matrices
Preparing the Ratings Matrix
Decomposing a Ratings Matrix
Estimating Ratings Using Gradient Descent
Course Summary
Final Exam: Advanced Math
This assessment will test your knowledge and application of the topics presented throughout the track.
Specificaties
Artikelnummer
128332211
SKU
128332211
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
45 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Volg nu een online cursus Word 2021 Gevorderd en Expert. U leert o.a. dia’s make...
€102,85€85,00
Specificaties
Artikelnummer
128332211
SKU
128332211
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
45 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Wij gebruiken functionele en analytische cookies om onze website goed te laten werken en het gebruik ervan te meten met Google Analytics. Er worden geen persoonsgegevens gedeeld voor advertentiedoeleinden. Door op "Accepteren" te klikken, geeft u toestemming voor het plaatsen van deze cookies.
Cookies beheren