Natural Language Processing and LLMs E-Learning Training Gecertificeerde docenten Quizzen Assessments Tips trucs en Certificaat.
Lees meer.
Volume voordeel
No discount
1 Piece
€239,58€198,00
2% Korting
2 Pieces
€234,79€194,04/ Stuk
3% Korting
3 Pieces
€232,39€192,06/ Stuk
4% Korting
4 Pieces
€230,00€190,08/ Stuk
5% Korting
5 Pieces
€227,60€188,10/ Stuk
10% Korting
10 Pieces
€215,62€178,20/ Stuk
15% Korting
25 Pieces
€203,64€168,30/ Stuk
20% Korting
50 Pieces
€191,66€158,40/ Stuk
Maak een keuze
Officieel examen Online of fysiek
Start nu – bekroonde e-learning Inclusief proefexamens & 24/7
ISO 9001 & 27001 werkwijze 1000+ organisaties gingen u voor
Maatwerk & gratis intake Inclusief nulmeting bij training
Productomschrijving
Natural Language Processing and LLMs E-Learning Training
Begrijp taal zoals machines dat doen – van NLP-basis tot geavanceerde Large Language Models.
Stap in de fascinerende wereld van Natural Language Processing (NLP) en Large Language Models (LLMs) met deze diepgaande e-learning training. Je begint met de fundamenten van NLP: tekstvoorbewerking, representatie en classificatie. Daarna ga je verder met deep learning-technieken voor NLP, en eindig je met de krachtigste technologieën van dit moment: transformerarchitecturen en LLMs zoals GPT en BERT.
Van het begrijpen van aandachtmechanismen tot het toepassen van LLMs voor taalvertaling en tekstsamenvatting – deze leerreis rust jou uit met alles wat je nodig hebt om taaltechnologie strategisch en innovatief toe te passen.
Waarom kiezen voor deze opleiding?
Beheers tekstverwerking, classificatie en NLP-preprocessing
Ontdek hoe deep learning en transformers NLP veranderen
Werk met cutting-edge LLMs zoals GPT, BERT en T5
Pas NLP toe in AI-oplossingen zoals vertaling, chatbots en samenvattingen
365 dagen toegang tot e-learning, mentor, labs en eindtoetsen
Wie zou moeten deelnemen?
Deze training is geschikt voor:
Data scientists en NLP-engineers die zich willen specialiseren in LLMs
AI-ontwikkelaars en ML-specialisten die taalmodellen willen toepassen
Studenten en onderzoekers met interesse in taaltechnologie
IT- of productmanagers die NLP-oplossingen willen integreren
Deze Learning Kit met meer dan 21 leeruren is verdeeld in drie sporen:
Demo Natural Language Processing and LLMs Training
Cursusinhoud
Track 1: Natural Language Processing
This track provides a comprehensive introduction to the core concepts and techniques in NLP. Beginning with an overview of NLP components, including natural language understanding (NLU) and natural language generation (NLG), the track explores common NLP tasks such as speech recognition and sentiment analysis. Participants will then delve into preprocessing text data using NLTK, covering essential techniques such as text cleaning, sentence segmentation, and parts-of-speech tagging. Additionally, the track explores methods for representing text in numeric format, including one-hot encoding and TF-IDF encoding, before introducing classification models for text data. Through hands-on exercises and practical examples, participants will learn how to build classification models using rule-based approaches, Naive Bayes classification, and other techniques, leveraging tools like Scikit-learn pipelines and grid search for optimal performance. Participants will then harness the power of TensorFlow for building deep learning models, followed by an in-depth exploration of text preprocessing techniques such as normalization, tokenization, and text vectorization. Through hands-on exercises, learners will delve into the intricacies of modeling building, training, and evaluation for text classification tasks, encompassing binary classification and multi-class classification using dense neural networks, recurrent neural networks (RNNs), and RNNs with LSTM cells. The track will also cover hyperparameter tuning using the Keras tuner to optimize model performance. Participants will gain proficiency in leveraging word embeddings, including training embedding layers in models, exploring and visualizing embeddings, and utilizing embeddings for tasks like word and semantic similarity. Moreover, the track will explore text translation using RNNs and demonstrate the utilization of pre-trained models for semantic textual similarity, providing participants with a comprehensive understanding of cutting-edge NLP techniques in the context of deep learning.
Courses:
Fundamentals of NLP: Introducing Natural Language Processing
Course: 48 Minutes
Course Overview
Introducing Natural Language Processing (NLP) with NLTK and spaCy
Text Preprocessing for Natural Language Processing
Setting up the Environment and Installing NLP Libraries
Exploring the Gutenberg and Brown NLTK Corpora
Course Summary
Fundamentals of NLP: Preprocessing Text Using NLTK and SpaCy
Course: 1 Hour, 57 Minutes
Course Overview
Implementing Word and Sentence Tokenization with NLTK
Implementing Word and Sentence Tokenization Using SpaCy
Performing Stop Word Removal Using NLTK
Performing Stopword Removal Using SpaCy
Understanding WordNet Synsets
Computing Word Similarity Using WordNet
Understanding Hypernyms, Hyponyms, Antonyms, Meronyms, and Holonyms
Performing Stemming Using NLTK
Performing Lemmatization Using NLTK
Performing Lemmatization Using SpaCy
Performing Parts of Speech Tagging and Named Entity Recognition
Course Summary
Fundamentals of NLP: Rule-based Models for Sentiment Analysis
Course: 46 Minutes
Course Overview
Sentiment Analysis Introduction
Loading and Understanding Review Data
Cleaning and Visualizing Review Data
Performing Sentiment Analysis Using VADER
Performing Sentiment Analysis Using TextBlob
Course Summary
Fundamentals of NLP: Representing Text as Numeric Features
Course: 2 Hours
Course Overview
One-hot Encoding to Represent Text in Numeric Form
Utilizing One-hot Encoding to Represent Text Data
Performing One-hot Encoding Using the Count Vectorizer
Frequency-based Encodings to Represent Text in Numeric Form
Perform Count Vector Encoding Using the Count Vectorizer
Working with Bag-of-Words and Bag-of-N-grams Representation
Perform TF-IDF Encoding to Represent Text Data
Exploring the Product Reviews Dataset
Building a Classification Model Using Count Vector Encoding
Comparing Models Trained with Stemmed Words and Stopword Removed
Classifying Text Using Frequency Filtering and TF-IDF Encodings
Training Classification Models Using Bag of N-grams
Training Classification Models with N-grams and TF-IDF Representation
Course Summary
Fundamentals of NLP: Word Embeddings to Capture Relationships in Text
Course: 1 Hour, 1 Minutes
Course Overview
Word Embeddings to Represent Text in Numeric Form
Generating Word2Vec Embeddings
Training a Classification Model Using Word2Vec Embeddings
Working with Pre-trained GloVe Embeddings
Training a Classification Model Using GloVe Embeddings
Training Different Classification Models for Sentiment Analysis
Course Summary
Natural Language Processing Using Deep Learning
Course: 1 Hour, 55 Minutes
Course Overview
Deep Learning with TensorFlow and Keras
Loading and Exploring a Text Dataset
Cleaning and Visualizing Data
Generating Count Vector Representations
Training a Deep Neural Network (DNN) Classification Model
TF-IDF Representations Using the TextVectorization Layer
Training a DNN Using TF-IDF Vectors
Visualizing the Results of TensorFlow Callbacks
Loading and Preprocessing Data for Sentiment Analysis
Training a DNN Using Word Embeddings
Training a DNN Using Pretrained GloVe Word Embeddings
Using a Convolutional Neural Network (CNN) for Sentiment Analysis
Course Summary
Using Recurrent Networks For Natural Language Processing
Course: 1 Hour, 15 Minutes
Course Overview
Recurrent Neural Networks (RNNs) for Sequential Data
Visualizing Word Embeddings Using the Embedding Projector Plug-in
Setting up Word Vector Representations for Training
Training an RNN for Sentiment Analysis
Training an RNN with LSTM and Bidirectional LSTM Layers
Performing Hyperparameter Tuning
Course Summary
Using Out-of-the-Box Transformer Models for Natural Language Processing
Course: 1 Hour, 30 Minutes
Course Overview
Transfer Learning
Using Pre-trained Embeddings from the TensorFlow Hub
Attention-based Models and Transformers
Performing Subword Tokenization with WordPiece
Using the FNet Encoder for Sentiment Analysis
Using the Universal Sentence Encoder (USE) for Semantic Textual Similarity
Structuring Data for Sentence Similarity Prediction Using BERT
Using a Fine-tuned BERT Model for Sentence Classification
Course Summary
Attention-based Models and Transformers for Natural Language Processing
Course: 2 Hours, 20 Minutes
Course Overview
Language Translation Models and Attention
Preparing Data for Language Translation
Configuring the Encoder-Decoder Architecture
Defining the Loss and Accuracy for the Translation Model
Training Validation and Prediction Using Encoder and Decoder
Setting up the Decoder Architecture with Attention Layer
Generating Translations Using the Attention Model
The Transformer Architecture: Part I
The Transformer Architecture: Part II
Using Query, Key, and Value in the Attention Mechanism
Structuring Translations for Input to a Transformer Model
Setting up the Encoder and Decoder in the Transformer Architecture
Training the Transformer Model and Using It for Predictions
Course Summary
Track 2: Architecting LLM for your Technical solutions
This track is designed to immerse participants in the transformative world of Large Language Models (LLMs), leveraging state-of-the-art techniques powered by deep learning and attention mechanisms. Participants will gain a deep understanding of attention mechanisms and the revolutionary transformer architecture, including self-attention and multi-head attention mechanisms. Through hands-on exercises and practical demonstrations, learners will explore the foundational concepts of LLMs and delve into implementing translation models using transformers. Moreover, participants will be introduced to the Hugging Face platform, learning to leverage pre-trained models from the Hugging Face library and fine-tune them for specific use cases. From text classification to language translation, question answering, text summarization, and natural language generation, participants will acquire the skills needed to harness the full potential of LLMs for a wide range of NLP tasks.
Courses:
NLP with LLMs: Working with Tokenizers in Hugging Face
Course: 2 Hours, 18 Minutes
Course Overview
Hugging Face Introduction
Hugging Face Tokenizers
Exploring the Hugging Face Platform
Setting up the Colab Environment
Normalizers and Pre-tokenizers
Byte Pair Encoding (BPE), Wordpiece, and Unigram Tokenization
Configuring the Normalizer and Pre-tokenizer for Wordpiece Tokenization
Building and Training a Wordpiece Tokenizer
Course Summary
NLP with LLMs: Hugging Face Classification, QnA, & Text Generation Pipelines
Course: 1 Hour, 50 Minutes
Course Overview
Hugging Face Pipelines
Performing Zero-shot Classification
Performing Sentiment Analysis Using DistilBERT
Detecting Emotion and Sentiment Analysis on Financial Data
Performing Named Entity Recognition (NER) with a Fine-tuned BERT Model
Performing Named Entity Recognition Using Tokenizer and Model
Performing Question Answering Using Pipelines
Performing Question Answering Using Tokenizer and Model
Performing Greedy Search and Beam Search for Text Generation Using GPT
Generating Text Using Sampling
Performing Mask Filling Using Variations of the BERT Model
Course Summary
NLP with LLMs: Language Translation, Summarization, & Semantic Similarity
Course: 1 Hour, 29 Minutes
Course Overview
Performing Language Translation Using Two Variants of the T5 Model
Performing Language Translation Using the M2M 100 and Opus Models
Summarizing Text Using a BART Model and a T5 Model
Loading Data and Cleaning Text for Summarization
Evaluating Summaries Using ROUGE Scores
Computing Semantic Textual Similarity Using Sentence Transformers
Performing Clustering Using Sentence Embeddings
Computing Embeddings and Similarity Using the Tokenier and Model
Course Summary
NLP with LLMs: Fine-tuning Models for Classification & Question Answering
Course: 1 Hour, 34 Minutes
Course Overview
Loading Data and Creating a Dataset for Fine-tuning
Setting up for Fine-tuning a BERT Classifier
Fine-tuning a BERT Model and Pushing to Hugging Face Hub
Getting Predictions from a Fine-tuned Model
Structuring Text for Named Entity Recognition
Aligning NER Tags to Match Subword Tokenization
Fine-tuning a BERT Model for Named Entity Recognition
Dealing with Long Contexts for Question Answering
Structuring QnA Data in the Right Format for Fine Tuning
Fine-tuning a DistilBERT Model for Question Answering
Course Summary
NLP with LLMs: Fine-tuning Models for Language Translation, & Summarization
Course: 1 Hour, 38 Minutes
Course Overview
Processing and Structuring Data for Causal Language Modeling (CLM)
Fine-tuning a DistilGPT-2 Model for Causal Language Modeling
Fine-tuning a DistilRoBERTa Model for Masked Language Modeling (MLM)
Preparing the Translation Data for Fine-tuning
Preprocessing Text and Computing Metrics for Translation
Fine-tuning the T5-small Model for English to Spanish Translation
Loading and Visualizing Summarization Data
Evaluating the Baseline Performance of the Pretrained T5-small Model
Fine-tuning the T5-small Model for Summarization
Comparing the Fine-tuned Model's Performance with the Baseline Model
Course Summary
Assessment:
Final Exam: Architecting LLMs for Your Technical Solutions
Specificaties
Artikelnummer
151962644
SKU
151962644
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
21:35 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Bestel DP-900 Microsoft Azure Data Fundamentals oefenexamen en start vandaag nog...
€60,50€50,00
Specificaties
Artikelnummer
151962644
SKU
151962644
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
21:35 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Wij gebruiken functionele en analytische cookies om onze website goed te laten werken en het gebruik ervan te meten met Google Analytics. Er worden geen persoonsgegevens gedeeld voor advertentiedoeleinden. Door op "Accepteren" te klikken, geeft u toestemming voor het plaatsen van deze cookies.
Cookies beheren