Start nu – bekroonde e-learning Inclusief proefexamens & 24/7
ISO 9001 & 27001 werkwijze 1000+ organisaties gingen u voor
Maatwerk & gratis intake Inclusief nulmeting bij training
Productomschrijving
Python Programming- From Novice to Pythonista E-Learning Training
Van beginner tot expert – maak jouw groeireis in Python compleet met deze alles-in-één training!
Waarom kiezen voor deze opleiding?
Python is niet voor niets een van de meest populaire en snelstgroeiende programmeertalen ter wereld. Dankzij de eenvoud van de taal, leesbaarheid van de code en een enorme community wordt Python ingezet voor alles: van webontwikkeling tot data-analyse, automatisering, AI, en zelfs cybersecurity.
De Python Novice to Pythonista-reis Training is speciaal ontworpen als groeipad voor wie vanaf nul wil starten en uiteindelijk wil uitgroeien tot volwaardige Pythonista. De training is opgedeeld in vier niveaus:
Track 1: Python Novice
Track 2: Python Apprentice
Track 3: Python Journeyman
Track 4: Pythonista
Wat je krijgt: ✔️ Geleidelijke opbouw van basis naar gevorderd niveau ✔️ Oefeningen, projecten en praktijkgerichte opdrachten ✔️ 24/7 online toegang, interactieve modules en voortgangsbewaking ✔️ Na afronding ontvang je een certificaat van deelname
Je leert werken met variabelen, functies en loops, maar ook met bestandsverwerking, objectgeoriënteerd programmeren, modules, API’s en real-world toepassingen zoals automatisering en data-analyse.
Wie zou moeten deelnemen?
Deze opleiding is perfect voor:
Beginners zonder programmeerervaring die met Python willen starten
IT-professionals die hun Python-vaardigheden willen uitbreiden
Data-analisten en wetenschappers die Python willen inzetten voor analyse en automatisering
Webontwikkelaars of scriptbouwers die hun workflow willen optimaliseren
Iedereen die wil doorgroeien naar een toekomstgerichte tech-rol
Dit leertraject, met meer dan 95 uur online inhoud, is verdeeld in de volgende vier tracks:
Demo Python Novice to Pythonista-reis Training
Cursusinhoud
Track 1: Python Novice
In this track of the Pythonista journey, the focus is getting started with Python, complex data types, conditional statements and loops, and first-class functions and lamdas.
Content: E-learning courses
Getting Started with Python: Introduction
Course: 1 Hour, 30 Minutes
Course Overview Python Introduction
Install and Set up Anaconda on Windows for Python
Run Jupyter notebooks on Windows for Python
Install and Set up Anaconda on MacOS for Python
Run Jupyter notebooks on MacOS for Python
Using Python as a Calculator
Working with Python Built-in Functions
Introducing Python Variables to Store Values
Working with Different Types of Variables in Python
Assigning Values to Variables in Python
Updating Variable Values in Python
Working with Python Simple Data Types
Creating Single-line and Multi-line Strings in Python
Complex Data Types in Python: Working with Lists & Tuples in Python
Course: 1 Hour, 39 Minutes
Course Overview
Introducing Lists
Performing Simple List Operations
Performing Useful List Operations
Using Built-in Functions with Lists
Perform Slicing Operations on Lists
Using Step Size in Slicing Operations
Working with Strings as a List of Characters
Invoking Functions on Strings
Perform Slicing Operations on Strings
Introducing Tuples
Understanding Tuple Immutability
Introducing Other Complex Data Types
Exercise: Lists, Tuples, Similar Yet Different
Complex Data Types in Python: Working with Dictionaries & Sets in Python
Course: 53 Minutes
Course Overview
Introducing Dictionaries
Nesting Complex Data Types Within Dictionaries
Invoking Functions on Dictionaries
Introducing Sets
Performing Set Operations
Working with Nested Lists
Performing List Conversions
Exercise: Dictionaries and Sets
Complex Data Types in Python: Shallow & Deep Copies in Python
Course: 45 Minutes
Course Overview
Copying Strings
Performing Shallow Copies of Lists
Performing Deep Copies of Lists
Creating Shallow and Deep Copies of Tuples
Creating Shallow Copies of Dictionaries
Creating Deep Copies of Dictionaries
Creating Shallow and Deep Copies of Sets
Exercise: Shallow and Deep Copies
Conditional Statements & Loops: If-else Control Structures in Python
Course: 1 Hour, 41 Minutes
Course Overview
Python Conditions
If Statements with Primitive Datatypes
If Statements with Complex Datatypes
If-else Elif Statements
Nested If-else Statements
If-else Statements with Complex Datatypes
Type Conversions with Primitive Datatypes
Type Conversions with Complex Datatypes
Type Conversions and Base Conversions
Basic Programs - Part 1
Basic Programs - Part 2
Basic Programs - Part 3
Basic Programs - Part 4
Exercise: If-else Statements in Python
Conditional Statements & Loops: The Basics of for Loops in Python
Course: 1 Hour, 2 Minutes
Course Overview
Iterating over Elements in a List
Iterating over Elements in a Tuple and Dictionary
The else Block of a for Loop
Nested Control Structures in a for Loop
An Introduction to the range Function
Setting Intervals in a Range
Exploring the range Function
Exercise: Basics of Python for Loops
Conditional Statements & Loops: Advanced Operations Using for Loops in Python
Course: 1 Hour, 6 Minutes
Course Overview
Introducing the break Statement
The break Statement and the else block
The continue Statement: Part 1
The continue Statement: Part 2
The pass Statement
Introducing Comprehensions
Applying Conditions in Comprehensions
Exercise: Advanced Operations in for Loops
Conditional Statements & Loops: While Loops in Python
Course: 1 Hour, 20 Minutes
Course Overview
An Introduction to While Loops
Basic While Loops - Part 1
Basic While Loops - Part 2
Single-line While Loops
Evaluating Complex Data with While Loops - Part 1
Evaluating Complex Data with While Loops - Part 2
Exit a While Loop Using the Break Statement1
Using the Pass Keyword in a While Loop
The Continue Statement in a While Loop
Exercise: While Loops in Python
Functions in Python: Introduction
Course: 2 Hours, 4 Minutes
Course Overview
Getting Started with Functions
Working with Functions
Functions as Objects
Input Arguments - Invoking Functions
Input Arguments - Referencing Global Variables
Input Arguments - Using Positional Arguments
Return Values - Functions
Return Values - Multi-return Statements
Return Values - Complex Data Types
Keyword Arguments - Invoking Functions
Keyword Arguments - Nuances
Default Arguments
Variable Length Arguments - *args Variable
Variable Length Arguments - Combinations
Variable Length Arguments - **kwargs Keyword6
Exercise: Introduction to Functions in Python
Functions in Python: Gaining a Deeper Understanding of Python Functions
Course: 1 Hour, 27 Minutes
Course Overview
Global and Local Variables
Argument Passing by Value
Argument Passing by Reference
Math and OS Modules
Random and Datetime Modules
Functions as Arguments - Input Arguments
Functions as Arguments - Variable Arguments
Functions as Return Values
Lambdas - Define and Invoke
Lambdas - Define, Invoke, and Discard
Lambdas - Filter() Function
Exercise: Definining Python Functions
Functions in Python: Working with Advanced Features of Python Functions
Course: 1 Hour, 27 Minutes
Course Overview
Recursion - Invoking Functions
Recursion - Conditions
Recursion - Calls
Generator Functions
Generators for Infinite Sequences
Closures
Closures and Local State
Decorators - Code Modification
Decorators - Customization
Chaining Decorators
Exercise: Advanced Features in Python Functions
Online Mentor
You can reach your Mentor by entering chats or submitting an email.
Final Exam assessment
Estimated duration: 90 minutes
Practice Labs: Python Novice (estimated duration: 8 hours)
Practice novice Python development tasks such as formatting data types, implementing flow control and conditionals, copying containers, and performing loops with list comprehension methods. Then, test your skills by answering assessment questions after converting data types, working with global and local variables within functions, invoking functions with varying parameters and implementing recursive functions and closures. This lab provides access to tools typically used when developing with Python, including:
Python, Anaconda
Jupyter Notebook + JupyterHub
Pandas
NumPy
SiPy
Seaborn Library
PyCharm IDE
Spyder IDE
MongoDB
MySQL,
VS Code
Track 2: Python Apprentice
In this track of the Pythonista journey, the focus is Python classes and inheritance and also data structures and algorithms.
Content: E-learning courses
Advanced Python Topics: File Operations in Python
Course: 1 Hour, 12 Minutes
Course Overview
Opening a File in Python
The Different Read Functions
Writing to Files in Python
The r+ and a+ Modes
Reading JSON Data in Python
Transforming Python Objects into JSON
Parsing Different Forms of CSV files
Transforming Python Objects into CSV
CSV Dialects
Course Summary
Advanced Python Topics: Exceptions & Command Line Arguments
Advanced Python Topics: Migrating from Python 2 to Python 3
Course: 40 Minutes
Course Overview
Installing a Python 2 Kernel for Jupyter Notebook
Differences Between Python 2 and Python 3 - Part 1
Differences Between Python 2 and Python 3 - Part 2
Using 2to3 to Identify Python 3 Compatibility
Transforming Python 2 Scripts Using 2to3
Course Summary
Python Classes and Inheritance: Introduction
Course: 50 Minutes
Overview
Introduction to Classes
Classes as Blueprints
Objects
Inheritance
Object-Oriented Programming
Exercise: Introduction to Classes and Inheritance
Python Classes & Inheritance: Getting Started with Classes in Python
Course: 1 Hour, 35 Minutes
Course Overview
Classes as Custom Data Types
Associating Attributes with Classes
Initializing Class Objects
Passing Arguments for Initialization
Defining Additional Methods in Classes
Introducing Class Variables
Class Variables and Instance Variables
Class Variable Memory Sharing
Instance Variables
Getters and Setters for Private Variables
Making Variables Private
Create a Classes to Represent a Student
Parse Student Details from a Dictionary
Exercise: Characteristics of Classes
Python Classes & Inheritance: Working with Inheritance in Python
Course: 1 Hour, 10 Minutes
Course Overview
Inheriting from the Object Base Class
Modeling is-a Relationship Using Subclasses
Invoking Base Class Methods from Subclasses
Defining Implementations of Base Class Methods
Superclass and Subclass Hierarchies
Defining Methods in the Subclass
Multiple Inheritance
Multilevel Inheritance
Polymorphism - Part 1
Polymorphism - Part 2
Exercise: Implementing Class Inheritance
Python Classes & Inheritance: Advanced Functionality Using Python Classes
Course: 1 Hour, 29 Minutes
Course Overview
The repr and str Special Methods
The add Special Method
The sub Special Method
The mul Special Method
Special Methods for Other Operations
Built-in Functions and Custom Data Types
Custom Iterators Using Special Methods
Defining Properties on Classes
Defining Properties Using Decorators
Class Methods
Static Methods
Abstract Base Classes
Exercise: Advanced Functionality in Classes
Data Structures & Algorithms in Python: Fundamental Data Structures
Course: 1 Hour, 20 Minutes
Course Overview
An Overview of Data Structures
Measuring the Performance of Operations
The Big O Notation
An Introduction to Linked Lists
Adding and Searching for Data in a Linked List
Deleting Nodes from a Linked List
Counting the Nodes in a Linked List
An Introduction to Stacks
Additional Stack Operations
An Introduction to Queues
Exercise: Fundamental Data Structures
Data Structures & Algorithms in Python: Implementing Data Structures
Course: 1 Hour, 30 Minutes
Course Overview
O(1) Operations
O(n) Operations - Part 1
O(n) Operations - Part 2
O(n*n) Operations
Python's Built-in Queue
Defining a Custom Queue
Use a Python List as a Stack
Defining a Custom Stack
Linked Lists: Defining Insert Operations
Linked Lists: Search, Delete, and Reverse Operations
Linked Lists: Testing the Functions
Exercise: Implementing Data Structures in Python
Data Structures & Algorithms in Python: Sorting Algorithms
Course: 1 Hour, 16 Minutes
Course Overview
An Introduction to Sorting
The Selection Sort
The Bubble Sort - Part 1
The Bubble Sort - Part 2
The Insertion Sort
The Shell Sort
The Merge Sort
The Quicksort - Part 1
The Quicksort - Part 2
Exercise: Sorting Algorithms
Data Structures & Algorithms in Python: Implementing Sorting Algorithms
Course: 1 Hour, 11 Minutes
Course Overview
The Selection Sort
The Bubble Sort
The Insertion Sort
Coding the Shell Sort Algorithm
Testing and Analyzing the Shell Sort Algorithm
The Merge Sort
Coding the Quicksort Algorithm
Testing and Analyzing the Quicksort Algorithm
Exercise: Implementing Sorting Algorithms
Data Structures & Algorithms in Python: Trees & Graphs
Course: 1 Hour, 34 Minutes
Course Overview
The Binary Search
The Binary Search Tree
BST: Insert and Lookup
BST: Extreme Values, Max Depth, and Sum Path
BST: Breadth First Traversal
BST: Depth First Traversal - Pre-Order and In-Order
BST: Depth First Traversal - Post-Order
An Introduction to Graphs
Graphs as an Adjacency Matrix
Graphs as an Adjacency List and Set
The Topological Sort
Exercise: Trees and Graphs
Data Structures & Algorithms in Python: Implementing Trees & Graphs
Course: 1 Hour, 27 Minutes
Course Overview
Implementing a Binary Search
Defining a Binary Search Tree
Common Operations on a BST
Breadth First Traversal of a BST
Depth First Traversal of a BST
Graphs: The Building Blocks
Graphs: The Adjacency Set Representation
Graphs: Testing the Adjacency Set
Graphs: The Adjacency Matrix
Graphs: A Breadth First Traversal
Graphs: A Depth First Traversal
Graphs: The Topological Sort
Exercise: Implementing Trees and Graphs in Python
Online Mentor
You can reach your Mentor by entering chats or submitting an email.
Final Exam assessment
Estimated duration: 90 minutes
Practice Labs: Python Apprentice (estimated duration: 8 hours)
Perform apprentice level Python development tasks such as file handling, implementing polymorphism, implementing special method names, as well as implementing an abstract class and using static methods. Then, test your skills by answering assessment questions after using a Python list as a stack, performing queue operations, implementing a graph as an adjacency matrix, and traversing a Binary Search Tree (BST).
Track 3: Python Journeyman
In this track of the Pythonista journey, the focus will be on Python Unit Testing, Python HTTP requests, Flask in Python, and Python concurrent programming.
Content: E-learning courses
Python Unit Testing: An Introduction to Python's unittest Framework
Course: 50 Minutes
Course Overview
An Introduction to the unittest Framework
Running Multiple Tests with unittest
Naming the Test Function
Selection of Specific Tests to Run
The Assert Functions
Skipping Tests
Course Summary
Python Unit Testing: Advanced Python Testing Using the unittest Framework
Course: 1 Hour, 1 Minute
Course Overview
The Case for Fixtures
setUp and tearDown Functions in a Test Script
setUpClass & tearDownClass Functions in a Script
Define and Run Test Suites
Test Suites with makeSuite
Install the PyCharm IDE
Unit Tests with the unittest Framework Using PyCharm
Unit Tests Testing Multiple Functions Using PyCharm
Course Summary
Python Unit Testing: Testing Python Code Using pytest
Course: 1 Hour, 14 Minutes
Course Overview
An Introduction to pytest
Running Multiple Tests using pytest
Test Selection in pytest
Halt Test Execution Based on Failures
Test Markers and Skipping Tests
Using the Python Debugger with pytest
Parametrized Tests Using pytest
Test Fixtures with pytest
Setting the Scope for Test Fixtures
The conftest.py File
Course Summary
Python Unit Testing: Testing Python Code Using doctest
Course: 44 Minutes
Course Overview
The doctest Module
The Placement of doctests
An Executable Document
Handle Unpredictable Outputs
Test for Exceptions
Handle Whitespace in the Output
Course Summary
Python Requests: HTTP Requests with Python
Course: 1 Hour, 42 Minutes
Course Overview
Installing the Requests Package
A Basic GET Request
Exploring an HTTP Response Containing JSON Data
Including Parameters in a GET Request
A Basic POST Request
A POST Request with Multiple Parameters
The HEAD Request
The PUT, OPTIONS, and DELETE Requests
Working with Request and Response Headers
Content Encoding and Binary Response Data
Handling Responses in Different Formats
HTTP Status Codes
Redirects and Timeouts
Exceptions
Exercise: HTTP Requests with Python
Flask in Python: An Introduction to Web Frameworks & Flask
Course: 50 Minutes
Course Overview
The Fundamentals of Web Requests
Web Frameworks
The Flask Framework
Flask Routes
Flask Templates
Flask Extensions
Course Summary
Flask in Python: Building a Simple Web Site Using Flask
Course: 1 Hour, 30 Minutes
Course Overview
Installing Flask
Creating a Basic Application on Flask
Exploring Route Definitions
Rendering HTML from Flask
Using Boilerplate HTML for a Web Site
Customizing the Appearance of a Web Site
The url_for Function
Defining a Base Jinja Template
Inheriting the Base Jinja Template
Pointing Multiple URLs to the Same Endpoint
Course Summary
Flask in Python: User Interactions in Flask Applications
Course: 1 Hour, 21 Minutes
Course Overview
Handling HTML Errors in Flask
Enabling POST Requests on a Route
Logging Information for a Flask Application
Message Flashing in a Flask Application
Styling Flashed Messages
Creating a Registration Page Using WTForms
Creating a Login Page Using WTForms
Incorporating the Registration and Login Pages
Validating Form Data on Submission
Testing Each of the Form Validators
Course Summar
Flask in Python: User Authentication in a Flask Application
Course: 1 Hour, 34 Minutes
Course Overview
Introducing SQL Alchemy
Creating Tables from Model Definitions
Executing Queries Using SQLAlchemy Models
Structuring a Flask Application for Maintenance
Restructuring a Flask Application
Creating Password Hashes Using Bcrypt
Defining Custom Validators for Form Fields
Enabling Users to Login to a Flask Application
Allowing Users to Log Out of a Flask Application
Displaying the Latest Reviews Submitted
Testing Feedback Display Functionality
Using Images in your Flask Web Site
Course Summary
Python Concurrent Programming: Introduction to Concurrent Programming
Course: 1 Hour, 30 Minutes
Course Overview
Working with Multiple Tasks
An Introduction to Multithreading
Applications of Multithreading
Multiprocessing
Concurrent Programming
Challenges with Concurrency
Synchronization Using Locks
Synchronization Using Semaphores
Synchronization Using Events and Conditions
Deadlocks
Data Structures for Concurrent Tasks
Thread and Process Pool
Exercise: Introduction to Concurrent Programming
Python Concurrent Programming: Multithreading in Python
Course: 1 Hour, 42 Minutes
Course Overview
Creating a Thread
Naming and Joining Threads
Deriving the Thread Class
Running Threads Concurrently
Race Conditions
Thread Synchronization with Locks
Simulating a Deadlock
Avoiding a Deadlock
Semaphores - Part 1
Semaphores - Part 2
The Event Object
The Condition Object
Exercise: Multithreading in Python
Python Concurrent Programming: Multiprocessing in Python
Course: 1 Hour, 17 Minutes
Course Overview
An Introduction to Python Queues
Multithreading with Python Queues
Creating Processes
Comparing Multiprocessing and Multithreading
Multiprocessing Using Shared Memory
Multiprocessing Using the Manager Class
Synchronizing Concurrent Processes with Locks
Inter-process Communication in Python
Exercise: Multiprocessing in Python
Python Concurrent Programming: Asynchronous Executions in Python
Course: 1 Hour, 2 Minutes
Course Overview
Process Pools in Python - Part 1
Process Pools in Python - Part 2
Introducing the concurrent.futures module
Threads vs. Processes for Network-bound Tasks
Threads vs. Processes for CPU-bound Tasks
Introducing the asyncio Module
Concurrent Execution Using the asyncio Module
Exercise: Asynchronous Executions in Python
Online Mentor
You can reach your Mentor by entering chats or submitting an email.
Final Exam assessment
Estimated duration: 90 minutes
Practice Labs: Python Journeyman (estimated duration: 8 hours)
Perform journeyman level Python development tasks such as testing with pytest, making HTTP requests, serving HTTP requests with a Flask endpoint, and rendering a jinja template. Then, test your skills by answering assessment questions after using multithreading and multiprocessing with Python, processing data in a queue and creating and executing a coroutine with Asyncio.
Track 4: Pythonista
In this track of the Pythonista journey, the focus is unit testing, developing, and debugging using the PyCharm IDE, wrangling Excel data, network programing, and hashing and encryption algorithms.
Content: E-learning courses
Introduction to Using PyCharm IDE
Course: 1 Hour, 17 Minutes
Course Overview
Installation of PyCharm
Syntax Highlighting in PyCharm
The Auto-complete Feature
The Refactor Feature
Debugging: Introducing Breakpoints
Debugging: Stepping Into and Stepping Over
Debugging: Conditional Breakpoints
Debugging: Resume
Python Package Installation from PyCharm
Course Summary
Excel with Python: Working with Excel Spreadsheets from Python
Course: 1 Hour, 17 Minutes
Course Overview
Manipulating data with Microsoft Excel
Manipulating Excel spreadsheets using openpyxl
Accessing Data in openpyxl
Manipulating Rows and Columns
Writing to Files
Manipulating Data in Files
Freezing Rows and Columns
Filtering Data
Sorting Data
Resizing Rows and Columns
Merging Rows and Columns
Course Summary
Excel with Python: Performing Advanced Operations
Course: 1 Hour, 30 Minutes
Course Overview
Working with Fonts and Styles
Working with Borders and Colors
Applying Number Formats
Applying Conditional Formatting
Using Advanced Conditional Formatting
Working with Images
Working with Formulae
More Operations Using Formulae
Using Absolute and Relative Cell References
Programmatically Constructing Absolute References
Using VLOOKUP
Working with Named Ranges
Working with Pivot Tables
Using Pandas for Pivoting
Leveraging Multi-level Indexing in Pandas5 MinutesCompletedActions
Course Summary
Excel with Python: Constructing Data Visualizations
Course: 1 Hour, 1 Minute
Course Overview
Plotting Data with Line Charts
Programmatically Constructing Line Charts
Customizing Chart Appearance
Customizing Chart Axes
Using Line Styles
Plotting Data with Bar Charts
Programmatically Constructing Bar Charts
Plotting Financial Data
Plotting Bubble Charts
Course Summary
Socket Programming in Python: Introduction
Course: 1 Hour, 3 Minutes
Course Overview
Introducing the socket Module
Using Sockets in Client and Server Applications
Using socket Objects in a with Block
Setting Timeouts for Python Sockets
Transferring Python Objects Over Sockets - Part 1
Transferring Python Objects Over Sockets - Part 2
Transferring Python Objects Over Sockets - Part 3
Course Summary
Socket Programming in Python: Advanced Topics
Course: 1 Hour, 21 Minutes
Course Overview
Sending Large Text Files Using Sockets
Receiving Large Text Files Using Sockets
Transferring Image Files with Sockets
Using Sockets to Build a Chat Application - Part 1
Using Sockets to Build a Chat Application - Part 2
Sockets in Blocking Mode
Sockets in Non-Blocking Mode
Using Python to Subscribe to RSS Feeds
UDP Sockets in Python
Course Summary
Python Design Patterns: Principles of Good Design
Course: 1 Hour, 35 Minutes
Course Overview
Design Patterns and Principles of Good Design
The SOLID Principles of Good Design - I
The SOLID Principles of Good Design - II
Other Principles of Good Design
The Principle of Single Responsibility
Implementing the Principle of Single Responsibility
The Open/Closed Principle
Liskov's Substitution Principle
The Interface Segregation Principle
The Dependency Inversion Principle
Types of Design Patterns
Creational, Structural, and Design Patterns
Course Summary
Python Design Patterns: Working with Creational Design Patterns
Course: 1 Hour, 50 Minutes
Course Overview
The Singleton Pattern
Implementing the Singleton Pattern
Pythonic Implementation of the Singleton Pattern
The Global Object Pattern
The Factory and Abstract Factory Patterns
Implementing a Simple Factory Method
Refactoring Code to Improve Design
Applying the Factory Pattern to the Serializer
Implementing the Abstract Factory Pattern
The Builder Pattern
Implementing the Builder Pattern
The Object Pool Pattern
Implementing the Object Pool Pattern
Setting Up the Object Pool as a Singleton
Course Summary
Python Design Patterns: Working with Structural Design Patterns
Course: 1 Hour, 27 Minutes
Course Overview
The Adapter Pattern
The Adapter Pattern for Legacy Components
Implementing the Adapter Pattern
The Decorator Pattern
Add Responsibilities Without the Decorator Pattern
Implementing the Decorator Pattern
The Façade Pattern
Implementing the Façade Pattern
The Proxy Pattern
Implementing the Proxy Pattern
The Flyweight Pattern
Implementing the Flyweight Pattern
Course Summary
Python Design Patterns: Working with Behavioral Design Patterns
Course: 1 Hour, 27 Minutes
Course Overview
The Strategy Pattern
Implementing the Strategy Pattern
The Chain of Responsibility Pattern
Implementing the Chain of Responsibility Pattern
The Observer Pattern
Simple Implementation of the Observer Pattern
Complex Implementation of the Observer Pattern
The Command Pattern
Implementing the Command Pattern
The Iterator Pattern
Implementing the Iterator Pattern
Course Summary
Online Mentor
You can reach your Mentor by entering chats or submitting an email.
Final Exam assessment
Estimated duration: 90 minutes
Practice Labs: Pythonista (estimated duration: 8 hours)
Perform development tasks expected of Pythonistas such as debugging with PyCharm, working with spreadsheet data and creating charts, and writing applications that can communicate using TPC sockets. Then, test your skills by answering assessment questions after working with Singleton, Observer and Factory design patterns and implementing iterators using special methods.
Ga vandaag nog van start!
Start jouw Python-reis en ontwikkel stap voor stap échte programmeervaardigheden. ✔️ Leer in je eigen tempo, van beginner tot gevorderde ✔️ Ontvang directe feedback met interactieve opdrachten ✔️ Word een gecertificeerde Pythonista
Specificaties
Artikelnummer
108824815
SKU
108824815
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
95 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Flickr for end users Training Bekroonde E-Learning cursus Uitgebreide interactie...
€156,09€129,00
Specificaties
Artikelnummer
108824815
SKU
108824815
Taal
Engels
Kwalificaties van de Instructeur
Gecertificeerd
Cursusformaat en Lengte
Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur
95 uur
Assesments
De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online mentor
U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Online Virtuele labs
Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Voortgangsbewaking
Toegang tot Materiaal
365 dagen
Technische Vereisten
Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning
Helpdesk en online kennisbank 24/7
Certificering
Certificaat van deelname in PDF formaat
Prijs en Kosten
Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie
Wij beoordelen dit per situatie
Award Winning E-learning
Tip!
Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.
Wij gebruiken functionele en analytische cookies om onze website goed te laten werken en het gebruik ervan te meten met Google Analytics. Er worden geen persoonsgegevens gedeeld voor advertentiedoeleinden. Door op "Accepteren" te klikken, geeft u toestemming voor het plaatsen van deze cookies.
Cookies beheren